Transmission, Identification and Common Randomness Capacities for Wire-Tape Channels with Secure Feedback from the Decoder
نویسندگان
چکیده
We analyze wire-tape channels with secure feedback from the legitimate receiver.We present a lower bound on the transmission capacity (Theorem 1), which we conjecture to be tight and which is proved to be tight (Corollary 1) for Wyner’s original (degraded) wire-tape channel and also for the reversely degraded wire-tape channel for which the legitimate receiver gets a degraded version from the enemy (Corollary 2). Somewhat surprisingly we completely determine the capacities of secure common randomness (Theorem 2) and secure identification (Theorem 3 and Corollary 3). Unlike for the DMC, these quantities are different here, because identification is linked to non-secure common randomness.
منابع مشابه
Watermarking Identification Codes with Related Topics on Common Randomness
Watermarking identification codes were introduced by Y. Steinberg and N. Merhav. In their model they assumed that (1) the attacker uses a single channel to attack the watermark and both, the information hider and the decoder, know the attack channel; (2) the decoder either completely he knows the covertext or knows nothing about it. Then instead of the first assumption they suggested to study m...
متن کاملQuantum and classical message identification via quantum channels
We discuss concepts of message identification in the sense of Ahlswede and Dueck via general quantum channels, extending investigations for classical channels, initial work for classical–quantum (cq) channels and “quantum fingerprinting”. We show that the identification capacity of a discrete memoryless quantum channel for classical information can be larger than that for transmission; this is ...
متن کاملClassical-quantum arbitrarily varying wiretap channel: Ahlswede dichotomy, positivity, resources, super-activation
We establish the Ahlswede dichotomy for arbitrarily varying classicalquantum wiretap channels, i.e., either the deterministic secrecy capacity of the channel is zero, or it equals its randomness-assisted secrecy capacity. We analyze the secrecy capacity of these channels when the sender and the receiver use various resources. It turns out that randomness, common randomness, and correlation as r...
متن کاملSecure Communication in Erasure Networks with State-feedback
The security and efficiency of communication are two of the main concerns for networks of today and the future. Our understanding of how to efficiently send information over various channels and networks has significantly increased in the past decade (see e.g., [1–3]), whereas our understanding of how to securely send information has not yet reached the same level. In this thesis, we advance th...
متن کاملCommon Randomness and Secret Key Capacities of Two-Way Channels
Common Randomness Generation (CRG) and Secret Key Establishment (SKE) are fundamental primitives that are used in information-theoretic coding and cryptography. We study these two problems over the two-way channel model of communication, introduced by Shannon. In this model, the common randomness (CK) capacity is defined as the maximum number of random bits per channel use that the two parties ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electronic Notes in Discrete Mathematics
دوره 21 شماره
صفحات -
تاریخ انتشار 2005